Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Clin Immunol ; 233: 108879, 2021 12.
Article in English | MEDLINE | ID: covidwho-1527619

ABSTRACT

COVID-19 is a pandemic requiring immediate solution for treatment because of its complex pathophysiology. Exploration of novel targets and thus treatment will be life savers which is the need of the hour. 2 host factors- TMPRSS2 and ACE2 are responsible for the way the virus will enter and replicate in the host. Also NRF2 is an important protein responsible for its anti-inflammatory role by multiple mechanisms of action like inhibition of NF-kB, suppression of pro-inflammatory genes, etc. NRF2 is deacetylated by Sirtuins and therefore both have a direct association. Absence of SIRT indicates inhibition of NRF2 expression and thus no anti-oxidative and anti-inflammatory protection for the cell. Therefore, we propose that NRF2 activators and/or SIRT activators can be evaluated to check their efficacy in ameliorating the symptoms of COVID-19.


Subject(s)
COVID-19/immunology , NF-E2-Related Factor 2/immunology , SARS-CoV-2/immunology , Sirtuins/immunology , Angiotensin-Converting Enzyme 2/immunology , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/metabolism , COVID-19/virology , Host-Pathogen Interactions/immunology , Humans , NF-E2-Related Factor 2/metabolism , SARS-CoV-2/metabolism , SARS-CoV-2/physiology , Serine Endopeptidases/immunology , Serine Endopeptidases/metabolism , Sirtuins/metabolism , Virus Attachment
2.
Int Arch Allergy Immunol ; 182(4): 324-338, 2021.
Article in English | MEDLINE | ID: covidwho-1076039

ABSTRACT

In this article, we propose that differences in COVID-19 morbidity may be associated with transient receptor potential ankyrin 1 (TRPA1) and/or transient receptor potential vanilloid 1 (TRPV1) activation as well as desensitization. TRPA1 and TRPV1 induce inflammation and play a key role in the physiology of almost all organs. They may augment sensory or vagal nerve discharges to evoke pain and several symptoms of COVID-19, including cough, nasal obstruction, vomiting, diarrhea, and, at least partly, sudden and severe loss of smell and taste. TRPA1 can be activated by reactive oxygen species and may therefore be up-regulated in COVID-19. TRPA1 and TRPV1 channels can be activated by pungent compounds including many nuclear factor (erythroid-derived 2) (Nrf2)-interacting foods leading to channel desensitization. Interactions between Nrf2-associated nutrients and TRPA1/TRPV1 may be partly responsible for the severity of some of the COVID-19 symptoms. The regulation by Nrf2 of TRPA1/TRPV1 is still unclear, but suggested from very limited clinical evidence. In COVID-19, it is proposed that rapid desensitization of TRAP1/TRPV1 by some ingredients in foods could reduce symptom severity and provide new therapeutic strategies.


Subject(s)
COVID-19/diet therapy , COVID-19/immunology , NF-E2-Related Factor 2/immunology , Nutrients/immunology , SARS-CoV-2/immunology , TRPA1 Cation Channel/immunology , TRPV Cation Channels/immunology , Antioxidants/metabolism , Biomarkers/metabolism , Brassica , COVID-19/complications , COVID-19/diagnosis , COVID-19 Testing , Desensitization, Immunologic/methods , Down-Regulation , Humans , Oxidative Stress/immunology , SARS-CoV-2/pathogenicity , Severity of Illness Index , Up-Regulation
3.
Nat Rev Immunol ; 20(9): 515-516, 2020 09.
Article in English | MEDLINE | ID: covidwho-690707
SELECTION OF CITATIONS
SEARCH DETAIL